Обмен билирубина в печени

/ обмен билирубина



В основе образования билирубина лежит разрушение железосодержащей части гемоглобина и других гемсодержащих белков и ферментов. Гем распадается до биливердина, который восстанавливается в билирубин.

Оглавление:

Свободный билирубин токсичен, не растворяются в воде и циркулирует в крови в комплексе с альбуминами. Этот билирубин дает непрямую реакцию Ван ден Берга (после осаждения альбуминов спиртом), поэтому называется непрямым.

Непрямой билирубин, будучи связанным с альбуминами, не проходит через неповрежденные мембраны почечных клубочков и не фильтруется в мочу.

Выведение билирубина осуществляется с желчью через кишечник. Билирубин, связанный с альбуминами, доставляется кровью в печень. Билирубин легко проникает через мембраны гепатоцитов, альбумины остаются в кровотоке.

В гепатоцитах билирубин соединяется с глюкуроновой кислотой, превращаясь в билирубинмоно- и диглюкуронид («выпрямляется», прямой,связанный).



Образованные билирубинглюкурониды нетоксичны, легко растворимы. Они направляются с желчью в кишечник для выведения из организма.

Из кишечника билирубин глюкурониды частично поступают в кровоток и, находясь в крови, представляют собой фракцию прямого билирубина, который дает прямую реакцию Ван ден Берга. Прямой билирубин в отличие от непрямого легко проникает через почечные фильтры и может выделяться с мочой.

В физиологических условиях сыворотка крови содержит при мерно 25 % прямого билирубина (связанного с глюкуроновой кислотой) и 75 % непрямого билирубина (альбумин-билирубина).

Таким образом, общий билирубин крови представляет собой суммарное количество непрямого и прямого билирубина.

У здоровых людей в сыворотке крови содержится билирубина 1,7—20,5 мкмоль/литр; прямого — 0,4—5,1 мкмоль/литр.



Билирубин представляет собой конечный продукт распада гема. Основная часть (80—85%) билирубина образуется из гемоглобина и лишь небольшая часть — из других гемсодержащих белков, например цитохрома Р450. Образование билирубина происходит в клетках ретикулоэндотелиальной системы. Ежедневно образуется около 300 мг билирубина.

Преобразование гема в билирубин происходит с участием микросомального фермента гемоксигеназы, для работы которого требуются кислород и НАДФН. Расщепление порфиринового кольца происходит селективно в области метановой группы в положении а. Атом углерода, входящий в состав a-метанового мостика, окисляется до моноксида углерода, и вместо мостика образуются 2 двойные связи с молекулами кислорода, поступающими извне. Образующийся в результате этого линейный тетрапиррол по структуре является IX-aльфа-биливердином. Далее он преобразуется биливердинредуктазой, цитозольным ферментом, в IX-aльфа-билирубин. Линейный тетрапиррол такой структуры должен растворяться в воде, в то время как билирубин является жирорастворимым веществом. Растворимость в липидах определяется структурой IX-aльфа-билирубина — наличием 6 стабильных внутримолекулярных водородных связей [5]. Эти связи можно разрушить спиртом в диазореакции (Ван ден Берга), в которой неконъюгированный (непрямой) билирубин превращается в конъюгированный (прямой). In vivo стабильные водородные связи разрушаются этерификацией с помощью глюкуроновой кислоты.

Около 20% циркулирующего билирубина образуется не из гема зрелых эритроцитов, а из других источников. Небольшое количество поступает из незрелых клеток селезёнки и костного мозга. При гемолизе это количество увеличивается. Остальной билирубин образуется в печени из гемсодержащих белков, например миоглобина, цитохромов, и из других неустановленных источников. Эта фракция увеличивается при пернициозной анемии, эритропоэтической уропорфирин и при синдроме Криглера-Найяра.

Транспорт и конъюгация билирубина в печени

Неконъюгированный билирубин в плазме прочно связан с альбумином. Только очень небольшая часть билирубина способна подвергаться диализу, однако под влиянием веществ, конкурирующих с билирубином за связывание с альбумином (например, жирных кислот или органических анионов), она может увеличиваться. Это имеет важное значение у новорождённых, у которых ряд лекарств (например, сульфаниламиды и салицилаты) может облегчать диффузию билирубина в головной мозг и таким образом способствовать развитию ядерной желтухи.

Печенью выделяются многие органические анионы, в том числе жирные кислоты, жёлчные кислоты и другие компоненты жёлчи, не относящиеся к жёлчным кислотам, такие как билирубин (несмотря на его прочную связь с альбумином). Исследования показали, что билирубин отделяется от альбумина в синусоидах, диффундирует через слой воды на поверхности гепатоцита |55]. Высказанные ранее предположения о наличии рецепторов альбумина не подтвердились. Перенос билирубина через плазматическую мембрану внутрь гепатоцита осуществляется с помощью транспортных белков, например транспортного белка органических анионов [50], и/или по механизму «флип-флоп» [55]. Захват билирубина высокоэффективен благодаря его быстрому метаболизму в печени в реакции глюкуронидизации и выделению в жёлчь, а также вследствие наличия в цитозоле связывающих белков, таких как лигандины (глутатион-8-трансфераза).



Неконъюгированный билирубин представляет собой неполярное (жирорастворимое) вещество. В реакции конъюгации он превращается в полярное (водорастворимое вещество) и может благодаря этому выделяться в желчь. Эта реакция протекает с помощью микросомального фермента уридиндифосфатглюкуронилтрансферазы (УДФГТ), превращающего неконъюгированный билирубин в конъюгированный моно- и диглюкуронид билирубина. УДФГТ является одной из нескольких изоформ фермента, обеспечивающих конъюгацию эндогенных метаболитов, гормонов и нейротрансмиттеров.

Ген УДФГТ билирубина находится на 2-й паре хромосом. Структура гена сложная (рис. 12-4) [2, 54]. У всех изоформ УДФГТ постоянными компонентами являются экзоны 2—5 на 3′-конце ДНК гена. Для экспрессии гена необходимо вовлечение одного из нескольких первых экзонов. Так, для образования изоферментов билирубин-УДФГТ1*1 и 1*2 необходимо вовлечение соответственно экзонов 1А и ID. Изофермент 1*1 участвует в конъюгации практически всего билирубина, а изофермент 1*2 почти или вовсе не участвует в этом [25]. Другие экзоны (IF и 1G) кодируют изоформы фенол-УДФГТ. Таким образом, выбор одной из последовательностей экзона 1 определяет субстратную специфичность и свойства ферментов.

Дальнейшая экспрессия УДФГТ 1*1 зависит также от промоторного участка на 5′-конце, связанного с каждым из первых экзонов |6|. Промоторный участок содержит последовательность ТАТАА.

Детали строения гена важны для понимания патогенеза неконъюгированной гипербилирубинемии (синдромы Жильбера и Криглера—Найяра; см. соответствующие разделы), когда в печени содержание ферментов, ответственных за конъюгацию, снижено или они отсутствуют.

Активность УДФГТ при печёночно-клеточной желтухе поддерживается на достаточном уровне, а при холестазе даже увеличивается. У новорождённых активность УДФГТ низкая.



У человека в жёлчи билирубин представлен в основном д и глюкуронидом. Превращение билирубина в моноглюкуронид, а также в диглюкуронид происходит в одной и той же микросомальной системе глюкуронилтрансферазы [37]. При перегрузке билирубином, например при гемолизе, образуется преимущественно моноглюкуронид, а при уменьшении поступления билирубина или при индукции фермента возрастает содержание диглюкуронида.

Наиболее важное значение имеет конъюгация с глюкуроновой кислотой, однако небольшое количество билирубина конъюгируется с сульфатами, ксилозой и глюкозой; при холестазе эти процессы усиливаются [II].

В поздних стадиях холестатической или печёночно-клеточной желтухи, несмотря на высокое содержание в плазме, билирубин в моче не выявляется. Очевидно, причиной этого является образование билирубина типа III, моноконъюгированного, который ковалентно связан с альбумином [54]. Он не фильтруется в клубочках и, следовательно, не появляется в моче. Это снижает практическую значимость проб, применяемых для определения содержания билирубина в моче.

Экскреция билирубина в канальцы происходит с помощью семейства АТФ-зависимых мультиспецифичных транспортных белков для органических анионов [27]. Скорость транспорта билирубина из плазмы в жёлчь определяется этапом экскреции глюкуронида билирубина.

Жёлчные кислоты переносятся в жёлчь с помощью другого транспортного белка. Наличие разных механизмов транспорта билирубина и жёлчных кислот можно проиллюстрировать на примере синдрома Дубина—Джонсона, при котором нарушается экскреция конъюгированного билирубина, но сохраняется нормальная экскреция жёлчных кислот. Большая часть конъюгированного билирубина в жёлчи находится в смешанных мицеллах, содержащих холестерин, фосфолипиды и жёлчные кислоты. Значение аппарата Гольджи и микрофиламентов цитоскелета гепатоцитов для внутриклеточного транспорта конъюгированного билирубина пока не установлено.



Диглюкуронид билирубина, находящийся в жёлчи, водорастворим (полярная молекула), поэтому в тонкой кишке не всасывается. В толстой кишке конъюгированный билирубин подвергается гидролизу b-глюкуронидазами бактерий с образованием уробилиногенов. При бактериальном холангите часть диглюкуронида билирубина гидролизуется уже в жёлчных путях с последующей преципитацией билирубина. Этот процесс может иметь важное значение для образования билирубиновых жёлчных камней.

Распределение билирубина в тканях при желтухе

Циркулирующий билирубин, связанный с белком, с трудом проникает в тканевые жидкости с низким содержанием белка. Если количество белка в них увеличивается, желтуха становится более выраженной. Поэтому экссудаты обычно более желтушны, чем транссудаты.

Ксантохромия цереброспинальной жидкости более вероятна при менингите; классическим примером этому может служить болезнь Вейля (желтушный лептоспироз) с сочетанием желтухи и менингита.

У новорождённых может наблюдаться желтушное прокрашивание базальных ганглиев головного мозга (ядерная желтуха), обусловленное высоким уровнем неконъюгированного билирубина в крови, имеющего сродство к нервной ткани.

При желтухе содержание билирубинам цереброспинальной жидкости небольшое: одна десятая или одна сотая от уровня билирубина в сыворотке.

При выраженной желтухе внутриглазная жидкость может окрашиваться в жёлтый цвет, чем объясняется чрезвычайно редкий симптом — ксантопсия (больные видят окружающие предметы в жёлтом цвете).

При выраженной желтухе жёлчный пигмент появляется в моче, поте, семенной жидкости, молоке. Билирубин является нормальным компонентом синовиальной жидкости, может содержаться и в норме.

Цвет кожи парализованных и отёчных участков тела обычно не изменяется.

Билирубин легко связывается с эластической тканью. Она в большом количестве содержится в коже, склерах, стенке кровеносных сосудов, поэтому эти образования легко становятся желтушными. Этим же объясняется несоответствие выраженности желтухи и уровня билирубина в сыворотке в периоде выздоровления при гепатите и холестазе.



Факторы, определяющие выраженность желтухи

Даже при полной обструкции жёлчных путей выраженность желтухи может варьировать. Вслед за быстрым повышением уровень билирубина в сыворотке приблизительно через 3 нед начинает снижаться, даже если обструкция сохраняется. Выраженность желтухи зависит как от выработки жёлчного пигмента, так и от экскреторной функции почек. Скорость образования билирубина из гема может меняться; при этом возможно образование, помимо билирубина, и других продуктов, которые не вступают в диазореакцию. Билирубин, в основном неконъюгированный, может также выделяться из сыворотки слизистой оболочки кишечника.

При длительном холестазе кожа приобретает зеленоватый оттенок, вероятно вследствие отложения биливердина, не участвующего в диазореакции (Ван ден Берга), а возможно, и других пигментов.

Конъюгированный билирубин, способный растворяться в воде и проникать в жидкости тела, вызывает более выраженную желтуху, чем неконъюгированный. Внесосудистое пространство тела больше, чем внутрисосудистое. Поэтому печёночно-клеточная и холестатическая желтуха обычно более интенсивная, чем гемолитическая.

Существует 4 механизма развития желтухи.



Во-первых, возможно повышение нагрузки билирубином на гепатоциты. Во-вторых, могут нарушаться захват и перенос билирубина в гепатоцит. В-третьих, может нарушаться процесс конъюгации. И наконец, может нарушаться экскреция билирубина в жёлчь через канальцевую мембрану либо развиваться обструкция более крупных жёлчных путей.

Выделяют 3 типа желтухи:

подпечёночную, или холестатическую.

Эти типы желтухи, особенно печёночная и холестатическая, имеют во многом сходные проявления.

Надпечёночная желтуха. Уровень общего билирубина в сыворотке повышается, активность сывороточных трансаминаз и ЩФ сохраняется в пределах нормы. Билирубин представлен в основном неконъ­югированной фракцией. В моче билирубин не выявляется. Этот тип желтухи развивается при гемолизе и наследственных нарушениях обмена билирубина.



Печёночная (печёночно-клеточная) желтуха (см. главы 16 и 18) обычно развивается быстро и имеет оранжевый оттенок. Больных беспокоят выраженная слабость и утомляемость. Печёночная недоста­точность может быть выражена в разной степени. При лёгкой печёночной недостаточности можно выявить лишь незначительные нарушения психического статуса, более выраженная печёночная недостаточность сопровождается появлением «хлопающего» тремора, спутанности сознания и комы. Небольшая задержка жидкости может проявиться лишь увеличением массы тела, при значительной задержке жидкости появляются отёки и асцит. Вследствие нарушения синтеза печенью факторов свёртывания крови возможны кровоподтёки, как после венопункций, так и спонтанные. При биохимическом исследовании выявляют повышение активности сывороточных трансаминаз; при длительном течении заболевания возможно также снижение уровня альбумина в сыворотке.

Холестатическая желтуха (см. главу 13) развивается при нарушении поступления жёлчи в двенадцатиперстную кишку. Значительного нарушения состояния больного (помимо симптомов основного заболевания) не происходит, отмечается интенсивный зуд. Желтуха прогрессирует, в сыворотке повышаются уровень конъюгированного билирубина, активность печёночной фракции ЩФ, ГГТП, а также уровень общего холестерина и конъюгированных жёлчных кислот. Вследствие стеатореи уменьшается масса тела и нарушается всасывание витаминов А, Д, Е, К, а также кальция.

Большое значение в установлении диагноза при желтухе имеют тщательно собранный анамнез, клиническое и лабораторное обследование и биохимический и клинический анализ крови. Необходимо исследование кала, которое должно включать анализ на скрытую кровь. При исследовании мочи следует исключить повышение содержания билирубина и уробилиногена. Дополнительные методы исследования — ультразвуковое исследование (УЗИ), биопсию печени и холангиографию (эндоскопическую или чрескожную) — применяют по показаниям в зависимости от типа желтухи.

Для продолжения скачивания необходимо собрать картинку:

Источник: http://studfiles.net/preview//

Обмен билирубина

Под желтухой понимают желтушное окрашивание тканей (кожи, склер) и тканевой жидкости (плазмы) вследствие повышения уровня билирубина. Желтушное окрашивание склер появляется при увеличении содержания билирубина в крови выше 2-2,5 мг/дл (большемкмоль/л; при нормальном содержании 0,3-1,0 мг/дл [5-7 мкмоль/л]), желтушное окрашивание кожи – при уровне билирубина выше 3,0-4,0 мг/дл (большемкмоль/л). При искусственном освещении, дающем желтоватый оттенок, можно не распознать желтуху даже при более высоком уровне билирубина. Желтуха не является специфичным симптомом заболеваний печени, однако позволяет сделать важное заключение о их тяжести и прогнозе.



Процесс обмена билирубина

Билирубин образуется из гема, который содержится в организме в виде простетической группы гемопротеинов и лишь в незначительном количестве – в свободной форме. Из всех гемопротеинов наиболее значимым источником билирубина является гемоглобин, который освобождается при распаде зрелых эритроцитов (70-80% билирубина образуется этим путем). Остальная часть билирубина образуется (приблизительно в равной мере) из гемоглобина незрелых, преждевременно разрушающихся эритроцитов и их предшественников в костном мозге и из гемсодержащих ферментов (цитохрома, каталазы и др.) в печени. Доля билирубина, источником которого служит свободный гем, минимальна.

Количество билирубина, ежедневно образующегося у взрослых, составляет 250 – 400 мг.

Образование билирубина из гема происходит в два этапа. Вначале тетрапиррольное кольцо гема расщепляется в определенном месте (а-метеновый мостик между кольцами А и D) с помощью фермента гемоксигеназы. При этом освобождаются железо и монооксид углерода. В результате указанной реакции в качестве промежуточного продукта образуется биливердин. На втором этапе биливердин восстанавливается в билирубин с помощью фермента биливердинредуктазы. Ферменты, способствующие превращению гема в билирубин, обнаруживаются в различных типах клеток и в различных органах. В печени способностью образовывать билирубин обладают гепатоциты и купферовские клетки. Вне печени высокая активность ферментов для синтеза билирубина обнаруживается в клетках мононуклеарной фагоцитарной системы (МФС) селезенки.

Билирубин, образовавшийся вне печени, циркулирует в крови в нековалентной связи с альбумином. Это препятствует обратной диффузии билирубина в ткани и, возможно, способствует его целенаправлен ному поступлению в печень. Способность альбумина связывать билирубин нарушается при концентрации билирубина болеемкмоль/л (>4-5 мг/дл). Некоторые эндогенные и экзогенные вещества способны вытеснять билирубин из его связи с альбумином.

Ранний меченный билирубин

После введения меченного предшественника гемма 65% меченного билирубина обнаруживается в крови через 40 – 80 дней (продолжительность жизни эритроцитов). Однако 10% меченного билирубина определяется через 1-3 дня. Билирубин, связанный с альбумином, попадает в печень через поры эндотелиальных клеток в пространство Диссе и непосредственно контактирует с синусоидальной мембраной гепатоцитов. В мембрану встроены транспортные белки для билирубина, которые облегчают его поступление в клетку путем диффузии.



Транспортная функция самого важного в количественном отношении транспортного белка за висит как от ионов Na, так и от ионов CL. Для данного белка характерна кинетика насыщения, и он обеспечивает транспорт как непрямого, так и прямого билирубина. За этот транспортный белок конкурируют лекарственные препараты и другие экзогенные вещества. Билирубин, поступивший внутрь клетки, связывается с белками. Таким образом, может обеспечиваться его накопление в нетоксичной форме и предотвращаться его обратная диффузия в кровь. Самым важным внутриклеточным белком связывания является лигандин – изофермент или субъединица глутатиона-S-трансферазы.

Конъюгация билирубина в печеночных клетках представляет собой главный этап в обмене билирубина и служит предпосылкой его последующей экскреции с желчью. При конъюгации оба остатка пропионовой кислоты билирубина подвергаются этерификации с глюкуроновой кислотой. При этом вначале возникает моноглюкуронид, а затем – билирубин-диглюкуронид. Перенос глюкуроновой кислоты, «активированной» посредством связывания с УДФ, к билирубину катализируется ферментом УДФ-глюкуронилтрансферазой (обычно сокращенно обозначаемой УГТ).

УДФ-глюкуронилтрансферазы печени образуют большую группу (семейство) изоферментов, отдельные представители которой катализируют глюкуронирование веществ, поступающих в организм извне (лекарственных препаратов), гормонов (кортикостероидов, катехоламинов) и эндогенных веществ (желчных кислот и билирубина). Для глюкуронирования билирубина большое значение имеют два изофермента, которые образуются из общего гена путем различного сплайсинга. Глюкуронилтрансферазы локализованы в эндоплазматической сети. В обеспечении их функции важную роль играют специфические липиды мембран. С помощью глюкуронирования в молекуле билирубина разрываются водородные мостики, вследствие чего билирубин становится менее «застывшим» и, в отличие от неконъюгированного билирубина, водорастворимым.

Экскреция конъюгированного билирубина из гепатоцитов в желчные канальцы представляет собой важный шаг, определяющий скорость обмена билирубина. Выделение билирубина осуществляется против высокого градиента концентрации. Оно обеспечивается транспортной АТФазой, которая транспортирует глюкуронид и производные глутатиона через каналикулярную мембрану. Энергия, необходимая для транспорта против градиента концентрации, поступает за счет гидролиза АТФ. Транспортная АТФаза для билирубинглюкуронида и производных глутатиона (MRP2) делает возможным также транспорт и других различных органических анионов через каналикулярную мембрану. Поэтому данный белок обозначался раньше сМОАТ (canalicular multispecific organic anion transporter – каналикулярный мультиспецифичный транспортер органических анионов). Конъюгированный билирубин не может всасываться в кишечнике. Под влиянием кишечных бактерий в терминальном отделе подвздошной кишки и толстой кишке происходит расщепление этерифицированных соединений глюкуроновой кислоты (деконъюгация билирубина). При этом с помощью бактериальных редуктаз образуются тетрапиррольные соединения (уробилиногены), а после их окисления – уробилин и стеркобилин.

Небольшая часть неконъюгированного билирубина может солюбилизироваться в толстой кишке желчными кислотами, затем всасываться и поступать через воротную вену в печень. При нарушении всасывания желчных кислот (например, при болезни Крона или после резекции терминального отдела подвздошной кишки с последующим повышением концентрации желчных кислот в просвете толстой кишки) количество всасывающегося и поступающего затем в энтерогепатическую циркуляцию билирубина возрастает, что ведет к образованию пигментных камней. Установлено, что уробилиногены и другие продукты превращения билирубина могут всасываться в кишечнике, поступать затем по воротной вене в печень и выделяться с желчью (энтерогепатическая циркуляция продуктов превращения билирубина).



Небольшое количество желчных пигментов, поступивших в воротную вену, может попасть, минуя печень, в большой круг кровообращения и выделиться почками. Однако выделение уробилиногена с мочой не является надежным индикатором обмена билирубина, поскольку уробилиноген в определенной мере может всасываться в почечных канальцах и, кроме того, оказывается нестабильным в кислой моче. Тем не менее, если уробилиноген в кале и моче не определяется вообще, то это указывает на полное препятствие оттоку желчи. Билирубин может выделяться с мочой только в том случае, если он присутствует в конъюгированной нестойко связанно с альбумином водорастворимой форме. Урсобилиногены бесцветны. Коричневая окраска кала обусловлена наличием в нем полимеров дипирролена и других метаболитов билирубина.

Таким образом, билирубин присутствует в крови в двух формах:

  • Неконъюгированный билирубин. Характеризуется нестойкой связью с aльбумином. Эта фракция билирубина не может выделяться через почки. Ее определение с помощью диазореакции возможно лишь после предварительного применения ацетона или метанола (поэтому он обозначается как непрямой билирубин);
  • Конъюгированный билирубин. Он поступает из гепатоцитов; возможно также его попадание из желчных капилляров и кровеносное русло. Конъюгированный билирубин циркулирует в свободной форме или в рыхлой, нестойкой связи с альбумином крови и выделяется через почки. Его определение с помощью диазореакции не требует дополнительного применения ацетона или метанола (поэтому он называется «прямой билирубин»). При длительно существующем (например, при холестазе) повышенном уровне гонъюгированного билирубина в крови возможно возникавшие ковалентной связи части конъюгирванного билирубина с альбумином. В такой форме билирубин не может выделяться через печень, ни через почки.

Абсолютное и относительное содержание конъюгированного и неконъюгированного билирубина с помощью обычно применяюшейся прямой и непрямой реакции оценивается в количественном отношении лишь приблизительно. Чувствительные аналититнческие методы показали, что в плазме крови здорового человека конъюгированный билирубин содержится в минимальном количестве, почти недоступном для измерения.

Вольфганг Герок, Хуберт Е.Блюм «Заболевания печени и желчевыделительной системы». 2009 г.

Источник: http://www.sibmedport.ru/article/5091-obmen-bilirubina/



Обмен билирубина. Виды желтух и их диагностика

Желтуха – желтое окрашивание кожи и слизистых оболочек, связанное с накоплением в них билирубина вследствие гипербилирубинемии. Возникновение желтухи всегда связано с нарушением обмена билирубина.

Основной источник билирубина – гемоглобин. Он превращается в билирубин в клетках ретикуло-гистиоцитарной системы, главным образом в печени, селезенке, костном мозге. За сутки распадается примерно 1% эритроцитов и из гемоглобина образуетсямг билирубина. Приблизительно 20% билирубина образуется не из гемоглобина зрелых эритроцитов, а из других гемсодержащих веществ. Этот билирубин называется шунтовым или ранним. Он образуется из гемоглобина распадающихся в костном мозге эритробластов, незрелых ретикулоцитов, из миоглобина, тканевых цитохромов, каталаз, триптофанпирролазы печени.

Образующийся билирубин поступает в кровь. Так как он нерастворим в воде при физиологическом рН крови, для транспортировки в крови он связывается с носителем – главным образом, альбумином.

Печень выполняет три важнейшие функции в обмене билирубина: захват билирубина из крови гепатоцитами, связывание билирубина с глюкуроновой кислотой и выделение связанного (конъюгированного) билирубина из гепатоцитов в желчные капилляры. Перенос билирубина из плазмы в гепатоцит происходит в печеночных синусоидах. Свободный (непрямой, неконъюгированный) билирубин отщепляется от альбумина в цитоплазменной мембране, внутриклеточные протеины гепатоцита захватывают билирубин и ускоряют его перенос в гепатоцит.

Поступив в гепатоцит, непрямой (неконъюгированный) билирубин переносится в мембраны эндоплазматической сети, где связывается с глюкуроновой кислотой под влиянием фермента УДФ-глюкоронилтрансферазы. Соединение билирубина с глюкуроновой кислотой делает его растворимым в воде, что делает возможным переход его в желчь, фильтрацию в почках и обеспечивает быструю (прямую) реакцию с диазореактивом (прямой, конъюгированный, связанный билирубин).



Далее билирубин выделяется из печени в желчь с помощью цитоплазматических мембран билиарного полюса гепатоцита, лизосом и аппарата Гольджи. Экскреция билирубина из гепатоцита в желчь находится под контролем гормонов гипофиза и щитовидной железы. Билирубин в желчи входит в состав макромолекулярных агрегатов (мицелл), состоящих из холестерина, фосфолипидов, желчных кислот и незначительного количества белка.

Билирубин поступает в кишечник и под действием бактериальных дегидрогеназ превращается в уробилиногеновые тела. Основное количество уробилиногена из кишечника выделяется с калом в виде стеркобилиногена, на воздухе превращающегося в стеркобилин. Часть уробилиногена всасывается через стенку тонкой кишки и попадает в воротную вену, затем в печень, где расщепляется. Часть уробилиногена из крови поступает в почки и выделяется в виде уробилина с мочой.

Нормальное содержание билирубина в крови: общий – 0,5-20,5 мкмоль/л; коньюгированный (прямой) – 0-4,3 мкмоль/л; неконьюгированный (непрямой) – 0-16,2 мкмоль/л.

Видимая желтуха появляется при билирубинемии 34 мкмоль/л. Раньше всего желтуха появляется на склерах, на небе и под языком. При осмотре можно различить следующие оттенки желтухи:

— оранжево-красный (rubinicterus) или шафраново-желтый при печеночной (паренхиматозной) желтухе;

— лимонно-желтый (flavinicterus) при надпеченочной (гемолитической) желтухе;



— зеленый (verdinicterus) прі подпеченочной (механіческой) желтухе;

— темно-олівковый (icterus melas) при очень длительном холестазе.

Следует помнить о ложной (экзогенной) желтухе вследствие нарушения обмена каротина и отложении его в коже.

Источник: http://lektsii.org/.html

ОБМЕН БИЛИРУБИНА В ОРГАНИЗМЕ

Основной источник билирубина — гемоглобин. Он превращается в билирубин в клетках ретикуло-гистиоцитарной системы, главным образом в печени, селезенке, костном мозге. За сутки распадается примерно 1% эритроцитов и из их гемоглобина образуется 10–300 мг билирубина. Приблизительно 20% билирубина образуется не из гемоглобина зрелых эритроцитов, а из других гемсодержащих веществ, этот билирубин называется шунтовым или ранним. Он образуется из гемоглобина распадающихся в костном мозге эритробластов, незрелых ретикулоцитов, из миоглобина и др.



При разрушении эритроцитов гемоглобин расщепляется на глобин, железосодержащий гемосидерин и не содержащий железа гематоидин. Глобин распадается на аминокислоты и снова идет на построение белков организма. Железо подвергается окислению и снова используется организмом в виде ферритина. Гематоидин (порфириновое кольцо) превращается через стадию биливердина в билирубин.

Образующийся билирубин поступает в кровь. Так как он не растворим в воде при физиологическом pH крови, то для транспортировки в крови он связывается с носителем — главным образом, альбумином.

Печень выполняет три важнейшие функции в обмене билирубина: захват из крови гепатоцитами, связывание билирубина с глюкуроновой кислотой и выделение связанного (конъюгированного) билирубина из гепатоцитов в желчные капилляры. Перенос билирубина из плазмы в гепатоцит происходит в печеночных синусоидах. Свободный (непрямой, неконъюгированный) билирубин отщепляется от альбумина в цитоплазматической мембране, внутриклеточные протеины гепатоцита захватывают билирубин и ускоряют его перенес в гепатоцит.

Поступив в гепатоцит, непрямой (неконъюгированный) билирубин переносится в мембраны эндоплазматической сети, где связывается с глюкуроновой кислотой под влиянием фермента глюкуронилтрансферазы. Соединение билирубина с глюкуроновой кислотой делает его растворимым в воде, что делает возможным переход его в желчь, фильтрацию в почках и обеспечивает быструю (прямую) реакцию с диазореактивом (прямой, конъюгированный, связанный билирубин).

Далее билирубин выделяется из печени в желчь. Экскреция билирубина из гепатоцита в желчь находится под контролем гормонов гипофиза и щитовидной железы. Билирубин в желчи входит в состав макромолекулярных агрегатов (мицелл), состоящих из холестерина, фосфолипидов, желчных кислот и незначительного количества белка.



Желчь течет согласно градиенту давления: печень выделяет желчь при давлении 300–350 мм.водн.ст., далее она накапливается в пузыре, который сокращаясь, создает давление 200–250 мм.вод.ст, что достаточно для свободного истечения желчи в ДПК при условии расслабления сфинктера Одди.

Билирубин поступает в кишечник и под действием бактериальных дегидрогеназ превращается в мезобилиноген и уробилиногеновые тельца: уробилиноген и стеркобилиноген. Основное количество уробилиногена из кишечника выделяется с калом в виде стеркобилиногена (60–80 мг в сутки), на воздухе превращающегося в стеркобилин, что окрашивает кал в коричневый цвет. Часть уробилиногена всасывается через стенку кишечника и попадает в воротную вену, затем в печень, где расщепляется. Здоровая печень полностью расщепляет уробилин, поэтому в норме в моче он не определяется.

Часть стеркобилиногена через систему геморроидальных вен попадает в общий кровоток и выводится почками (около 4 мг в сутки), придавая моче нормальный соломенно-желтый цвет.

Нормальное содержание билирубина в крови:

непрямой (неконъюгированный, свободный): 4–16 мкмоль/л (75–85% от общего);.



прямой (конъюгированный, связанный): 1–5 мкмоль/л (15–25% от общего).

Повышение уровня общего билирубина в крови (гипербилирубинемия) свыше 27–34 мкмоль/л приводит к связыванию его эластическими волокнами кожи и конъюнктивы, что проявляется желтушным окрашиванием. Тяжесть желтухи обычно соответствует уровню билирубинемии (легкая форма — до 85 мкмоль/л, среднетяжелая — 86–169 мкмоль/л, тяжелая форма — свыше 170 мкмоль/л). При полном блоке желчных протоков ежедневно происходит повышение уровня билирубина на 30–40 мкмоль/ч (до уровня 150 мкмоль/л, далее скорость снижается).

Интенсивность желтухи зависит от кровоснабжения органа или ткани. Сначала обнаруживается желтое окрашивание склер, несколько позднее кожных покровов. Накапливаясь в коже и слизистой, билирубин в сочетании с другими пигментами прокрашивает их в светло-желтый цвет с красноватым оттенком. В дальнейшем происходит окисление билирубина в биливердин, и желтуха приобретает зеленоватый оттенок. При длительном существовании желтухи кожные покровы приобретают черновато-бронзовую окраску. Таким образом, осмотр больного позволяет решить вопрос о длительности желтухи.

Источник: http://studopedia.ru/4_161535_obmen-bilirubina-v-organizme.html

Обмен билирубина в организме человека: норма и патологии

Врачи различных специализаций должны владеть знаниями касательно обмена билирубина в организме человека в нормальном режиме и при патологических нарушениях. При нарушении нормального процесса обмена билирубина происходит появление такого симптома, как желтуха. На начальных этапах нарушение обмена пигмента способны выявить только лабораторные исследования. Одним из главных таких исследований является биохимический анализ сыворотки крови.



Билирубин — это желчный пигмент. Является продуктом распада гемсодержащих соединений организма, который путем множественных превращений экскретируется из организма человека почками и ЖКТ.

У взрослого человека за сутки образуется околомг билирубина. В норме билирубин образуется из гема в органах РЭС (ретикуло-эндотелиальной системы), преимущественно в селезенке и костном мозге, путем гемолиза. Более 80% пигмента образуется из гемоглобина, а остальные 20% из других гемсодержащих соединений (миоглобина, цитохромов).

Порфириновое кольцо гема под действием фермента гемоксигеназы окисляется, теряя атом железа, превращается в вердоглобин. А затем в биливердин, который восстанавливается (с помощью фермента биливердинредуктаза) до непрямого билирубина (НБ), являющегося нерастворимым в воде соединением (синоним: неконъюгированный билирубин, т. е. не связанный с глюкуроновой кислотой).

В плазме крови непрямой билирубин связывается в прочный комплекс с альбумином, который транспортирует его в печень. В печени НБ превращается в прямой билирубин (ПБ). Наглядно это можно увидеть на рисунке 2. Весь этот процесс протекает в 3 этапа:

  1. 1. Происходит захват гепатоцитом (клетка печени) непрямого билирубина после отщепления от альбумина.
  2. 2. Затем протекает конъюгация НБ с превращением в билирубин-глюкуронид (прямой или связанный билирубин).
  3. 3. И в самом конце экскреция образовавшегося прямого билирубина из гепатоцита в желчные канальцы (оттуда в желчевыводящие пути).

Второй этап проходит с помощью фермента — УДФГТ (уридиндифосфатглюкуронилтрансфераза или, говоря простым языком, глюкуронилтрансфераза).

Попав в двенадцатиперстную кишку в составе желчи, от прямого билирубина отщепляется 2-УДФ-глюкуроновая кислота и образуется мезобилирубин. В конечных отделах тонкого кишечника мезобилирубин под действием микрофлоры восстанавливается до уробилиногена.

20% последнего всасывается через мезентериальные сосуды и попадает снова в печень, где полностью разрушается до пиррольных соединений. А остальная часть уробилиногена в толстом кишечнике восстанавливается до стеркобилиногена.

80% стеркобилиногена выделяется с калом, который под действием воздуха превращается в стеркобилин. А 20% стеркобилиногена всасывается через средние и нижние геморрагические вены в кровоток. Оттуда уже соединение покидает организм в составе мочи и в виде стеркобилина.

Сравнительная характеристика непрямого и прямого билирубина:

В клинической практике почти каждый специалист сталкивался с нарушением процесса обмена билирубина, который проявляется в виде симптома желтухи.

Желтуха — это синдром окрашивания в желтый цвет слизистых оболочек, склер и кожи, в основе которого лежит нарушение обмена билирубина с избыточным содержанием его в крови.

Специалисты выделяют 3 вида желтухи — надпеченочная, печеночная и подпеченочная.

Развивается при заболеваниях, связанных с усиленным гемолизом эритроцитов:

  1. 1. Корпускулярные (гемолиз связан с нарушением структуры и функции самого эритроцита; врожденного и приобретенного характера) — аутоиммунные анемии, талассемия, серповидно-клеточная анемия, микросфероцитоз (болезнь Минсковского-Шоффара), мегалобластные анемии (неэффективный эритропоэз) и др.
  2. 2. Экстракорпускулярные (гемолиз связан с воздействием различных факторов на эритроцит, приводит к его гибели) — переливание несовместимой крови, резус-конфликт матери и плода, вирусные инфекции, сепсис, малярия, краснуха, укусы ядовитых змей, воздействие мышьяка, фосфора, сульфаниламидов и др.
  3. 3. Гемолитические желтухи, обусловленные усиленным внесосудистым гемолизом — рассасывание массивных гематом, инфаркты легких и других внутренних органов, кровоизлияние в брюшную и плевральную полость.
Печень при гемолитической желтухе здорова. Она старается избыток непрямого билирубина, который образуется при усиленном гемолизе, превратить в прямой билирубин и отправить его в кишечник. Поэтому в кале и моче увеличивается количество стеркобилина, в крови повышается количество непрямого билирубина, потому что гепатоциты не успевают его обезвредить.

Кожа принимает лимонно-желтый цвет (пациенты больше бледны, чем желты из-за гибели эритроцитов). Кал становится черного или темно-коричневого цвета (как темный шоколад), а моча приобретает буро-коричневую окраску. Биохимический анализ сыворотки крови, мочи и кала помогает обнаружить изменение концентраций желчных пигментов.

При расшифровке общего анализа крови (ОАК) обнаруживается анемия (уменьшение гемоглобина и эритроцитов), ретикулоцитоз и, возможно, патологические эритроциты (например, микросфероциты), а также другие показатели, указывающие на какой-то определенный вид наследственной гемолитической анемии.

Все зависит от того, где происходит гемолиз эритроцита — внутрисосудисто или внутриклеточно (в селезенке). При внутриклеточном гемолизе обнаруживается увеличение концентрации непрямого билирубина в крови, повышение уровня стеркобилина в моче и кале. При внутрисосудистом гемолизе наблюдается повышение уровня свободного гемоглобина плазмы крови, гемоглобинурия, гемосидеринурия, понижение уровня гаптоглобина в плазме крови.

Такой тип желтухи наблюдается при повреждении или гибели гепатоцитов, в результате чего печень не может участвовать в метаболизме билирубина. Гепатиты (острые и хронические) вирусной или аутоиммунной природы, гепатозы, циррозы печени, лептоспироз, токсические поражения печени (свинец, ртуть, мышьяк, бензол и его производные, ядовитые грибы), лекарственные или алкогольные поражения печени, амилоидоз, саркоидоз, гепатоцеллюрный рак (карцинома) являются причиной этого. Сюда относятся ферментативные нарушения в гепатоците — синдром Жильбера, Ротора, Дабина-Джонсона, Криглера-Найяра.

Печень больна, поэтому можно сделать следующие выводы:

  1. 1. Так как гепатоциты поражены, то они не успевают превратитьнепрямой билирубин в прямой. Повышается уровень НБ в крови.
  2. 2. Уробилиноген не разрушается полностью в печени, попадает в кровоток и мочу, его концентрация увеличивается.
  3. 3. Прямой билирубин эффективно не выводится в кишечник, а начинает попадать в кровь. Наблюдается обратная диффузия ПБ из кишечника в кровь. Концентрация последнего резко увеличивается в крови и он появляется в моче.
  4. 4. Так как прямого билирубина мало в кишечнике, то это значит, что содержание стеркобилина в кале и моче ничтожно.

Кожа принимает шафраново-желтый или красноватый цвет (красновато-желтый). Кал становится светло-коричневого цвета (как молочный шоколад), а моча принимает желто-бурый окрас. Наблюдаются симптомы заболевания, которые привели к поражению печени, и признаки поражения органа. Биохимический анализ сыворотки крови, мочи и кала помогает обнаружить изменение концентраций желчных пигментов.

В основе желтухи лежит обтурация желчевыводящих путей — сдавливание протока опухолью головки поджелудочной железы, увеличенными лимфатическими узлами. Возможен рак желчного пузыря или протоков, опухоль фатерова соска, желчекаменная болезнь (ЖКБ).

Большой вред наносят гельминты (клубок глистов), атрезия или гипоплазия желчных протоков, рубцовые сужения (после операций или перенесенного воспалительного процесса), холангиты (например, первично-склерозирующий холангит).

Так как прямому билирубину не удается попасть в кишечник, он всасывается в кровь, потому что рвутся от повышенного давления желчные капилляры. Повышается концентрация билирубина в крови и моче.

В связи с избытком последнего, активность ферментов по принципу обратной связи снижается и непрямой билирубин не успевает метаболизироваться. Поэтому в крови повышается его концентрация. Так как ПБ не попадает в кишечник, стеркобилина в кале и моче нет.

Кожа пациентов окрашивается в зеленый или темно-оливковый цвет. Кал становится ахоличный (как белый шоколад), а моча приобретает желто-зеленую окраску. Биохимический анализ сыворотки крови, мочи и кала помогает обнаружить изменение концентрации желчных пигментов.

  • истинная обусловлена гипербилирубинемией;
  • ложная — это желтушное прокрашивание кожи в результате приема лекарств (окрихиновая желтуха) или естественных красителей (каротин).

Можно встретить различные характеристики окраски кожи, мочи и кала. Описание при различных видах желтухи носит субъективный характер и может отличаться. При дифференциальной диагностике желтухи первым делом необходимо решить вопрос: истинная желтуха или ложная.

И немного о секретах.

Здоровая печень — залог вашего долголетия. Этот орган выполняет огромное количество жизненно необходимых функций. Если были замечены первые симптомы заболевания желудочно-кишечного тракта или печени, а именно: пожелтение склер глаз, тошнота, редкий или частый стул, вы просто обязаны принять меры.

Рекомендуем обязательно прочитать мнение Елены Малышевой , о том как просто и быстро буквально за 2 недели восстановить работу ПЕЧЕНИ. Читать статью >>

Вся информация на сайте предоставлена в ознакомительных целях. Перед применением любых рекомендаций обязательно проконсультируйтесь с врачом.

Полное или частичное копирование информации с сайта без указания активной ссылки на него запрещено.

Источник: http://zdorpechen.ru/biliary/bilirubin/obmen-bilirubina

Обмен билирубина

Источником билирубина в организме человека является гемоглобин распадающихся эритроцитов. .

  1. Расщепление гемоглобина на гем и глобин происходит в макрофагах печени, селезенки, костного мозга.
  2. Гем превращается в биливердин (предшественник билирубина) при участии некоторых ферментов (гемоксигеназа, цитохром Р-450, НАДФ и др.), в итоге образуется так называемый непрямой билирубин (НБ) или свободный билирубин. Название «непрямой» дано этой форме билирубина из-за того, что с диазореактивом он дает непрямую реакцию Ван-ден-Берга. НБ не растворим в воде, но хорошо растворяется в жирах, поэтому может накапливаться в жиросодержащих тканях — подкожной клетчатке, нервной ткани, поэтому остается токсичным в отношении ЦНС.
  3. Непрямой билирубин поступает в кровь и переносится внутрь печеночной клетки.
  4. В печеночной клетке билирубин связывается (конъюгирует) с глюкуроновой кислотой (ГК): 1) с 1-й молекулой ГК внутри печеночной клетки и образуется моноглюкуронидбилирубин (МГБ), который выделяется в желчь и 2) в стенке желчных капилляров соединяется еще с 1 молекулой ГК и образуется диглюкуронидбилирубин (ДГБ) или связанный, или прямой билирубин (ПБ). ПБ дает прямую реакцию с диазореактивом, от чего и происходит его название «прямой». ПБ не токсичный, хорошо растворим в воде, поэтому растворяется в водных биологических жидкостях и при высоком содержании придает им желтую окраску, в результате могут появиться желтые слезы, темная моча «цвета пива», желтая спинномозговая жидкость.
  5. ПБ экскретируется в желчные протоки и далее в пищеварительный тракт. В просвете кишечника под влиянием кишечной флоры ПБ восстанавливается до уробилиногена. Часть уробилиногена в кишечнике всасывается в кровь, а большая его часть вновь попадает в печень, небольшое количество выводится через почки, что придает желтое окрашивание мочи. Не всосавшийся уробилиноген превращается в стеркобилиноген, а затем стеркобилин и выводится с калом, окрашивая его.
  • Оцените материал

Перепечатка материалов с сайта строго запрещена!

Информация на сайте предоставлена для образовательных целей и не предназначена в качестве медицинской консультации и лечения.

Источник: http://www.sweli.ru/deti/do-goda/bolezni-detey-do-goda/obmen-bilirubina.html

Распад гема — многостадийный процесс

За сутки у человека распадается около 9 г гемопротеинов, в основном это гемоглобин эритроцитов.

Эритроциты в норме живутдней, после чего лизируются в клетках ретикулоэндотелиальной системы – макрофагах селезенки (главным образом), купферовских клетках печени и макрофагах костного мозга. При разрушении эритроцитов в кровеносном русле высвобождаемый гемоглобин образует комплекс с белком-переносчиком гаптоглобином (фракция α2-глобулинов крови) и также переносится в клетки РЭС селезенки, печени и костного мозга.

Синтез билирубина

В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина.

Реакции распада гемоглобина и образования билирубина

Билирубин – токсичное, жирорастворимое вещество, способное разобщать окислительное фосфорилирование в клетках. Особенно чувствительны к нему клетки нервной ткани.

Строение билирубина

Выведение билирубина

Из клеток ретикуло-эндотелиальной системы билирубин попадает в кровь. Здесь он находится в комплексе с альбумином плазмы, в гораздо меньшем количестве – в комплексах с металлами, аминокислотами, пептидами и другими малыми молекулами. Образование таких комплексов не позволяет выделяться билирубину с мочой. Билирубин в комплексе с альбумином называется свободный (неконъюгированный) или непрямой билирубин.

Этапы метаболизма билирубина в организме

Из сосудистого русла в гепатоциты билирубин попадает с помощью белка-переносчика (транспортный белок органических анионов) или по механизму флип-флоп. Далее при участии цитозольного связывающего белка лигандина (Y-протеин, сейчас известен как глутатион-S-трансфераза) билирубин транспортируется в ЭПР, где протекает реакция связывания билирубина с УДФ-глюкуроновой кислотой, при этом образуются моно — и диглюкурониды . Кроме глюкуроновой кислоты, в реакцию конъюгации могут вступать сульфаты, фосфаты, глюкозиды.

Билирубин-глюкуронид получил название связанный (конъюгированный) или прямой билирубин.

Реакции синтеза билирубин-диглюкуронида
Строение билирубин-диглюкуронида

После образования билирубин-глюкурониды АТФ-зависимым переносчиком секретируются в желчные протоки и далее в кишечник, где при участии бактериальной β-глюкуронидазы превращаются в свободный билирубин. Одновременно, даже в норме (особенно у взрослых), некоторое количество билирубин-глюкуронидов может попадать из желчи в кровь по межклеточным щелям.

Таким образом, в плазме крови обычно присутствуют две формы билирубина: свободный (непрямой) , попадающий сюда из клеток РЭС (80% и более всего количества), и связанный (прямой) , попадающий из желчных протоков (до 20%).

Превращение в кишечнике

В кишечнике билирубин подвергается восстановлению под действием микрофлоры до мезобилирубина и мезобилиногена ( уробилиногена ). Часть уробилиногена всасывается и с кровью портальной вены попадает в печень, где либо распадается до моно-, ди- и трипирролов, либо окисляется до билирубина и снова экскретируется. При этом при здоровой печени в общий круг кровообращения и в мочу мезобилирубин и уробилиноген не попадают, а полностью задерживаются гепатоцитами.

Оставшаяся в кишечнике часть пигментов ферментами бактериальной флоры толстого кишечника восстанавливается до стеркобилиногена . Малая часть стеркобилиногена может всасываться и катаболизировать в печени, подобно уробилиногену. Также незначительное количество стеркобилиногена через геморроидальные вены попадает в большой круг кровообращения, отсюда в почки и выделяется с мочой (стеркобилин мочи). Основное количество стеркобилиногена достигает нижних отделов толстого кишечника и выделяется из организма.

В прямой кишке и на воздухе стеркобилиноген окисляется в стеркобилин , окрашивая кал. Аналогично уробилиноген в моче (при патологии печени) превращается в уробилин .

Вы можете спросить или оставить свое мнение.

Источник: http://biokhimija.ru/lekcii-po-biohimii/26-biohimija-krovi/192

Обмен билирубина в организме. Причины желтухи

Желчные пигменты представляют собой продукты расщепления гемма. Первичный продукт катаболизма гемма- тетрапиррол. Он в организме с помощью ферментов превращается в билирубин. Эти вещества в воде не растворяются. Вместе с белками крови – альбуминами билирубин попадает в печень и конъюгируется. Конъюгация в печени делает из билирубина водорастворимое вещество, и происходит это с помощью реакции с глюкуроновой кислотой. Билирубин выделяется в желчь, которая поступает в кишечник, и таким образом выводится с организма.

Механизмы и цели конъюгации билирубина в печени

Билирубин в свободном виде, который поступает из крови в печень, связывается с глюкуроновой кислотой. Этот процесс происходит в гладком эндоплазматическом ретикулуме с участием набора ферментов УДФ- глюкуронилтрансферазы и УДФ- глюкуроновой кислоты. При этом синтезируются моно- и диглюкурониды. Билирубин- глюкуронид — это прямой, связанный или конъюгированный билирубин.

После образования конъюгированного билирубина он выделяется в желчные протоки АТФ- зависимым переносчиком. При попадании в кишечник бактериальная в- глюкуронидаза превращает билирубин в свободный билирубин. При этом небольшое количество прямого билирубина может попадать из желчи в кровь по межклеточным промежуткам. Таким образом, в плазме крови присутствуют одновременно две формы билирубина — прямой и непрямой.

Превращение билирубина в кишечнике. Виды билирубина

При попадании из желчных протоков в кишечник конъюгированный билирубин подвергается действию кишечной микрофлоры, и прямой билирубин превращается в мезобилирубин и мезобилиноген (уробилиноген). Некоторая часть этих соединений попадает в кровь и переносится в печень. В печени мезобилирубин и уробилиноген окисляются до ди- и трипироллов. В здоровом и нормально функционирующем организме такие соединения билирубина не попадают в мочу и кровь человека. Они полностью остаются в клетках печени. Остаточная часть билирубина в толстом кишечнике под действием микрофлоры превращается в стеркобилин, который окрашивает кал в коричневый цвет. Таким образом билирубин выводится с организма.

Повышенный билирубин при нарушении процесса конъюгации

При снижении активности билирубинглюкуронилтрансферазы нарушается процесс конъюгации билирубина в печени и наблюдается повышенный билирубин за счет непрямого билирубина. Такой процесс наблюдается у новорожденных, у которых фермент еще не функционирует должным образом. При этом кожа и склеры желтеют, а уровень билирубина в крови не выше 150мг/л. Это состояние физиологичное и проходит бесследно на второй неделе жизни. У недоношенных деток желтуха затягивается иногда до 4 недель. При этом уровень билирубина может достигать около 200мг/л. Такая ситуация опасна тем, что может развиться билирубиновая энцефалопатия.

Также есть заболевание, которое не дает созреть глюкуронилтрансферазе. Это заболевание щитовидной железы – гипотиреоз. Билирубин при гипотиреозе может достигать 350мг/л.

Наследственные нарушения конъюгации билирубина в печени

Существуют патологии и синдромы, которые сопровождаются дефектами синтеза глюкуронилтрансферазы и нарушением процесса конъюгации билирубина в печени.

  • Синдром Криглера–Наияра, который имеет две формы. 1 тип — полное отсутствие глюкуронилтрансферазы, 2 тип — частичная недостаточность фермента. Этот синдром наследуется по аутосомно-рецессивному типу. 1 тип может вызывать повышение концентрации билирубина в крови до 340 мг/л. У деток первого года жизни синдром может вызывать ядерную желтуху, что иногда приводит к летальным исходам. При синдроме Криглера- Наияра эффективна фототерапия, которая позволяет снизить уровень билирубина до 50%. Но в последующих периодах возможно развитие ядерной желтухи.

При втором типе синдрома гипербилирубинемия менее высокая. Отличить типы синдрома Криглера- Наияра можно по эффективности лечения фенобарбиталом. При втором типе уровень билирубина и часть неконьюгированного билирубина снижаются, а содержание моно- и диконъюгатов в желчи увеличивается. При первом типе концентрация билирубина в сыворотке крови не снижается.

  • Синдром Дубина- Джонсона представляет собой доброкачественную желтуху с хроническим течением, при которой характерно наличие темного пигмента в центролобулярной области гепатоцитов. Часто такую печень называют «шоколадной». При синдроме отмечаются дефекты в секреции желчи, порфиринов и темного пигмента. Развитие синдрома провоцируется нарушением транспорта в желчь органических анионов. Синдром Дубина- Джонсона не сопровождается зудом кожи, а уровень желочной фосфотазы и желчных кислот остается в норме.
  • Синдром Ротора – это семейное идиопатическое заболевание, при котором наблюдается одинаковое повышение прямого и непрямого билирубина. Синдром Ротора очень схож с синдромом Дубина- Джонсона, однако при нем не наблюдается темного пигмента в гепатоцитах. При этой патологии нарушается захват неконъюгированного билирубина клетками печени. Проявляется синдром хронической желтухой, иктеричностью кожи и слизистых оболочек.

Причины приобретенного повышения билирубина в печени

Приобретенные нарушения активности глюкуронилтрансферазы могут быть спровоцированы приемом некоторых лекарственных средств и патологией печени. Повреждение клеток печени приводит к снижению функции выделения больше, чем функция связывания билирубина. Поэтому при заболевании печени всегда повышенный билирубин в основном за счет конъюгированного билирубина.

  • Гипербилирубинемия за счет превышения в крови прямого билирубина. Нарушения выделения билирубина в желчные протоки приводит к гипербилирубинемии и гипербилирубинурии. При обнаружении билирубина в моче это свидетельствует о повышенном содержании в крови прямого билирубина. По этому анализу определяют тип желтухи. Ведь желтуха бывает на фоне обструкции желчных протоков и на фоне гепатоцеллюлярных заболеваний.
  • Приобретенные нарушения функции фермента глюкуронилтрансферазы появляются на фоне приема лекарственных препаратов, которые влияют на строение и функцию гепатоцитов.

Также заболевания печени, такие как цирроз и гепатит, провоцируют нарушения активности фермента. Когда повреждаются печеночные клетки, между желчными путями, кровеносными и лимфатическими сосудами появляются протоки, через которое желчь поступает в кровь. Отекшие из-за патологического процесса гепатоциты сдавливают желчные протоки и вызывают механическую желтуху.

Добавьте в закладки чтобы не потерять / поделитесь с друзьями:

Последние статьи

Мнение доктора медицинских наук и профессора Ильи Месхи об estet.

8 вещей, которые не стоит делать в постели

Самое популярное

Что Вы тянете на самом деле: растяжка мышц в картинках

Мужские эрогенные зоны: сексуальное удовольствие мужчин

Гороскоп красоты

мы в соц. сетях

Все материалы созданы и подготовлены для некоммерческих и образовательных целей посетителей Портала. Мнение редакции не всегда совпадает с мнением авторов. При цитировании или копировании любой информации обязательно должна быть указана ссылка на estet-portal.com как источник.

© 2011–2017 Все права защищены. За материалы, предоставленные на правах рекламы, ответственность несёт рекламодатель. Запрещается копирование статей и других объектов права интеллектуальной собственности сайта www.estet-portal.com без указания прямой, видимой и индексируемой поисковыми системами ссылки непосредственно над или под источником контента.

Соглашаясь просматривать материалы раздела, я подтверждаю, что являюсь дипломированным специалистом

Источник: http://estet-portal.com/statyi/obmen-bilirubina-v-organizme-prichiny-zheltukhi